RISK SCENARIO PLANNING
Evaluating Mineral Supplementation for Hawai'i Beef Production

John P. Hewlett - University of Wyoming Department of Agricultural \& Applied Economics

Managing agricultural businesses in today's environment is definitely challenging, perhaps more challenging than in the past. One of the reasons for the increased difficulties comes from the many risks operators face.

Risk is described as a special case of uncertainty where the outcomes and probabilities are known. In popular usage, risk is generally understood to mean future events for which the outcomes are uncertain. Not all uncertainty is created equal, however. We might describe risk as a case where the uncertainty matters; if the outcomes did not matter there would be no risk.

Traditionally, we have described risk in agricultural as coming from five distinct sources: market risk, production risk, institutional risk, human risk, and financial risk.

Strategies for Managing Risk

1. Avoid it
2. Reduce it
a) Reduce the probability it will happen
b) Reduce the impact if it does happen
3. Transfer it outside the business
a) Insurance
b) Contracting
4. Increase capacity to bare
a) Increase reserves
b) Maintain flexibility
5. Accept it

UNIVESITY O SHGMTRISK.

Strategies for managing risk or the consequences of a negative event, should it occur, vary by source of risk and level of protection already in place.

In general, the options range from avoiding the risky practice entirely (minimizing the risk) to accepting the risk (self-insuring). Between these two extremes are several possibilities for managing the risk to a more acceptable level by: reducing the risk, transferring the risk, or increasing the capacity to bear the risk.
How much risk is right for you?

Risk management may be accomplished at several levels within a business. At the highest level-the strategic level-management makes decisions regarding the allocation of resources across business activities, the timing of the application of those resources, and the level of resource use. At this higher level, management also decides which enterprise activities to engage in. Put in another way, these decisions include which crops to grow, which stage to sell at, whether to diversify or vertically integrate, whether to sell direct to consumers or to contract with wholesalers. Such decisions represent "big picture" or macro-level decisions about the business and its activities.

In general, risk management strategies are intended to improve the net income of the business over time. One way of depicting this is with a probability curve. Here you can see we have net income described on the x-axis with probability described on the y-axis. As we move upward along the curve, we the probability is increasing. As a result, the highest point on the curve is where the average net income would be found and along the tails to either side are lesser probability events with either low or high levels of income.

Now if we follow some sort of risk management strategy we might want to consider how we might like to change the probability curve. We need to think through how it is we want that probability curve to change, whether that might be by changing its shape, shifting it left or right, or by some other adjustment.

In this conceptual graph on the screen, we see that we have reduced the spread of the distribution. By doing so, we have reduced the consequence of the lowest returns, as indicated by the protection arrow to the left. In order to gain that protection we've also had to give up some of the higher-level returns labeled as cost to the right. In return, we have increase the probability of earning an average level return centered around the middle of the diagram, as shown at the peak of the curve.

On short, we've purchased some level of protection by having made some sort of payment, but in return we have increased the possibility of earning a more consistent level of income.

Strategy Impacts

There is definitely more than one way to influence the probability distribution and impact net income. This slide depicts several possibilities open to us. The trick is for us to decide what might be the intended impact of any risk management strategy we might be considering for our business.

Comparing risk management strategies can be challenging without analytical tools to help us. In fact, that may be the biggest challenge to selecting and following a strategy for managing risk.

The RightRisk team has spent the last several years developing risk analytics to evaluate various management decisions, including comparing risk management strategies.

The balance of this presentation will focus on the Risk Scenario Planner tool, which is designed to assist farm and ranch managers evaluate the impact of relatively minor management changes and to include the effects or impacts of risk in that analysis.

Risk Scenario Planner
 Description

- The Risk Scenario Planner (RSP) Tool is designed to provide financial analysis of management strategies and decisions involving risk
- Examples include: changes in production practices, adding and subtracting operating inputs, or other management alternatives that are fairly straight forward to define and evaluate
- The RSP tool uses a partial budget framework for collecting data to reflect one or more decisions for analysis

WIVERSITY (3) STGNTSVSK

The Risk Scenario Planning Tool was developed to help producers play the "what-if" game while analyzing proposed changes to their operation. The tool is based on the standard set-up for a partial budget.

Partial Budget Framework

A partial budget is a tool used to analyze the financial effect of simple management changes

- Positive Effects
- Added Returns
- Reduced Costs
- Negative Effects
- Reduced Returns
- Added Costs

UNIVERSITY
WVOMING F STGHTSTSK

A partial budget is a simple framework to analyze changes for a portion of an operation.

Those changes are described by entering the financial consequence of the change as:

An Add return
or
An Reduce cost
OR as
An Add cost
or
An Reduce return

Positive effects of the change are calculated by adding the added returns and reduced costs
From which we subtract the
Negative effects of the change or the sum of the reduced returns and added costs

RSP Tool

- The RSP tool goes beyond a partial budget by taking risk (change over time) into consideration
- The RSP tool allows one or possibly two of the input values to be uncertain numbers for any alternative analyzed
- This can lead to a more thorough understanding of possible outcomes if the change is implemented

The Risk Scenario Planning Tool provides a template for the decision-maker to enter the financial effects of making proposed change(s) to their operation. It then adds the ability for the decisionmaker to further refine estimates for some of input values as uncertain numbers. This produces a more robust analysis of the proposed change and a more thorough understanding of the possible outcomes if the change is implemented.

The Risk Scenario Planner input worksheet has space for the user to enter the expected changes. The worksheet allows for a text description, the quantity and associated price. The tool then calculates the total financial impact.

The calculations include totaling the Positive Effects on the left, as well as the total Negative Effects on the right side of the form. The total overall expected net benefit is also calculated at the bottom.

Case 1: Bred Heifers

- The WX Ranch runs a 350 head cow/calf operation in the Rocky Mountain region. Each year they expect to replace about 15 percent of their mother cows or 52 head. As a result, they normally hold 52 heifers out of
 each calf crop over the winter to breed as replacement animals.
- The WX Ranch is considering making a change that would involve keeping back an additional 40 heifers to put through the heifer development program.

UNIVERSITY
OWVOMING BNGMTRISK

An example may be an easier way to see how this tool might be used.

Consider the WX Ranch which has a 350 head, cow/calf enterprise in the Rocky Mountain region. Each year they expect to replace about 15 percent of their mother cows or 52 head. As a result, they normally hold 52 heifers out of each calf crop over the winter to breed as replacement animals.

The WX is considering making a management change that would involve keeping back an additional 40 heifers to put through a heifer development program.

Case 1: Bred Heifers

- For added returns the WX expects 34 of the 40 extra replacement heifers to be bred and ready to sell as herd replacements each fall. They expect that these should sell for around $\$ 1,200$ per head or $\$ 40,800$ total.
- The 6 heifers that do not get bred can be sold as yearling feeder animals. The WX expects them to weigh about 900 pounds each and bring about $\$ 134.50$ per cwt. This will result in another $\$ 7,263$ in additional revenue.
- Finally, the extra replacement heifers will require a couple of additional bulls to run with the herd. The WX estimates that this change will result in about 600 more pounds of cull bull sales each year at $\$ 85.00$ per cwt. or $\$ 510$ total.
- The total positive effects that the WX Ranch expects to gain from making this change to the operation are $\$ 48,573$ in added returns.

```
UNIVERSITY
WYOMING
```


For added returns the WX expects 34 of the 40 extra replacement heifers to be bred and ready to sell as herd replacements each fall. They expect that these should sell for around $\$ 1,200$ per head or $\$ 40,800$ total.

The 6 heifers that do not get bred can be sold as yearling feeder animals. The WX expects them to weigh about 900 pounds each and bring about $\$ 134.50$ per cwt. This will result in another $\$ 7,263$ in additional revenue.

Finally, the extra replacement heifers will require a couple of additional bulls to run with the herd. The WX estimates that this change will result in about 600 more pounds of cull bull sales each year at $\$ 85.00$ per cwt. or $\$ 510$ total.

The total positive effects that the WX Ranch expects to gain from making this change to the operation are $\$ 48,573$ in added returns.

Case 1: Bred Heifers

- For reduced returns, saving back 40 extra replacement heifers means the WX will have 40 fewer weaned heifers to sell each fall. They estimate that their weaned heifers weigh about 500 pounds each and the market price for them is about $\$ 137.00$ per cwt. This results in $\$ 27,400$ in total reduced returns.

For reduced returns, saving back 40 extra replacement heifers means the WX will have 40 fewer weaned heifers to sell each fall. They estimate that their weaned heifers weigh about 500 pounds each and the market price for them is about $\$ 137.00$ per cwt. This results in $\$ 27,400$ in total reduced returns.

Case 1: Bred Heifers

- For added costs, the WX estimates that six AUMs of grazing per head would be needed at $\$ 20$ per AUM that adds an expense of $\$ 4,800$.
- A winter feed estimate of 1.75 tons of hay per head at $\$ 190$ per ton adds an additional hay expense of $\$ 13,300$.
- The WX also estimates $\$ 10$ per head or $\$ 400$ total in additional vet \& medicine expenses.
- Additional labor expenses are a little more difficult to estimate but their best guess is about 275 additional hours will be needed to check, move, handle, and feed the animals with the rest of your herd. At $\$ 12$ per hour, this totals to $\$ 3,300$ in added labor costs.

UNIVERSITY O ZTAHTSFSK.
OWYOMING

For added costs, the WX estimates that six AUMs of grazing per head would be needed at $\$ 20$ per AUM that adds an expense of $\$ 4,800$.
A winter feed estimate of 1.75 tons of hay per head at $\$ 190$ per ton adds an additional hay expense of \$13,300.
The WX also estimates $\$ 10$ per head or $\$ 400$ total in additional vet $\&$ medicine expenses.
Additional labor expenses are a little more difficult to estimate but their best guess is about 275 additional hours will be needed to check, move, handle, and feed the animals with the rest of your herd. At $\$ 12$ per hour, this totals to $\$ 3,300$ in added labor costs.

Case 1: Bred Heifers

- The $\$ 27,400$ in reduced returns from not selling the 40 heifers as weaned calves is money the WX does not have in the bank and it will be a full year before they see the returns from selling the heifers as yearlings. At 8 percent interest, this adds $\$ 2,192$ in interest costs.
- Having two more bulls in the herd will also cost the WX in terms of opportunity costs (\$69.15) and depreciation (\$666.66).
- Finally, they tally up a subset of their fuel, supplies, repairs, and maintenance costs that they expect to increase with the additional animals and come up with a current cost of $\$ 29.81$ per cow. Applying this to 40 head of additional replacement heifers results in $\$ 1,192.40$ in added costs.
- The end result is $\$ 25,920.18$ in added costs resulting from making the change to the WX Ranch operations.

UNIVERSITY
WYYOMINC

The $\$ 27,400$ in reduced returns from not selling the 40 heifers as weaned calves is money the WX does not have in the bank and it will be a full year before they see the returns from selling the heifers as yearlings. At 8 percent interest, this adds $\$ 2,192$ in interest costs.

Having two more bulls in the herd will also cost the WX in terms of opportunity costs (\$69.15) and depreciation (\$666.66).
Finally, they tally up a subset of their fuel, supplies, repairs, and maintenance costs that they expect to increase with the additional animals and come up with a current cost of $\$ 29.81$ per cow. Applying this to 40 head of additional replacement heifers results in $\$ 1,192.40$ in added costs.

The end result is $\$ 25,920.18$ in added costs resulting from making the change to the WX Ranch operations.

Case 1: Bred Heifers

- Added returns would result from
- Selling 40 bred heifers each year
- Selling 6 feeder open heifers each year
- Selling 6 additional cull bulls each year

Added returns would result from
Selling 40 bred heifers each year
Selling 6 feeder open heifers each year
Selling 6 additional cull bulls each year

Case 1: Bred Heifers

- Reduced returns would result from not selling the 40 heifer calves each fall

UNIVERSITY O BMGTTRISK:

Reduced returns would result from not selling the 40 heifer calves each fall

Case 1: Bred Heifers

Added Costs	Quantity		Value		
Private Grazing (40 hd. X6AUMs)	240	\$	20.00	\$	4,800.00
Hay (40 hd. X 1.75 tons)	70	\$	190.00	\$	13,300.00
Vet \& Medicine	40	\$	10.00	\$	400.00
Hired Labor (hours)	275	\$	12.00	\$	3,300.00
interest-Operating Capital	27400	\$	0.08	\$	2,192.00
Bull Opportunity Cost	2	\$	34.56	\$	69.12
Annuat Buill Depreciation	2	\$	333.33	\$	666.66
Fuet, Supplies, Repairs, Maintenance, etc.	40	\$	29.81	\$	1,192.40

- Added costs would include:
- Addedgrazing and added hay,
- Addedvet \& medicine
- Addedlabor
- Intereston operating capital
- Bull depreciation
- Added fuel, supplies, repairs, maintenance, etc.

University O SRGMTRISK.

Added costs would include:
Added grazing and added hay,
Added vet \& medicine
Added labor
Interest on operating capital
Bull depreciation
Added fuel, supplies, repairs, maintenance, etc.

Case 1: Bred Heifers
 RSP Input Screen

These are all the entries to describe the WX strategy for keeping back an additional 40 heifers to put through a heifer development program.

Total positive effects of the change would amount to $\$ 48,573$

Total negative effects are $-\$ 53,320.18$

The Net Benefit, adding the positive and negative effects together come to about $-\$ 4,747.18$.

Case 1: Bred Heifers
RSP Input Screen

The question is: Should the WX make the change?

If we only calculated one result, the Net Benefit of $-\$ 4,747.18$, we probably wouldn't look any further into this strategy.

Case 1: Bred Heifers
 RSP Input Screen

What if the WX sets the value of your bred heifers as uncertain?

- The current value of $\$ 1,200$ is in cell D6 of the Risk Scenario Planning tool. We enter "Bred Heifer Value" as the description and "D6" as the cell under Uncertain Value 1
- Then enter 1200 as the current value,
- 1100 as a possible minimum value, and
- 1500 as a possible maximum value.

UNIVERSITY O RHGMTRTSK

What if the WX sets the value of the bred heifers as uncertain?

The current value of $\$ 1,200$ is in cell D6 of the Risk Scenario Planning tool.

We enter "Bred Heifer Value" as the description and "D6" as the cell under Uncertain Value 1 Then enter 1200 as the current or most likely value, 1100 as a possible minimum value, and 1500 as a possible maximum value.

Case 1: Bred Heifers
 RSP Input Screen

The WX Ranch wants to make hay price an uncertain value as well.

- The current hay price of $\$ 190$ per ton is contained in cell H 7 , so we enter "Hay Price" as the description and "H7" as the cell under Uncertain Value 2.
- We use 190 as the current value, and
- 130 as a possible minimum value, and
- 250 as a possible maximum value for hay price

In addition, how would the analysis come out if the hay price is uncertain as well?
The current hay price of $\$ 190$ per ton is contained in cell H7,
so we enter "Hay Price" as the description and "H7" as the cell under Uncertain Value 2.
We use 190 as the current or most likely value, 130 as a possible minimum value, and 250 as a possible maximum value for hay price

Case 1: Bred Heifers
 RSP Results Screen

- A cumulative distribution graph gives the probability of earning a net return at or below any certain value.

A cumulative distribution graph gives the probability of earning a net return at or below any certain value.

After allowing the two uncertain values (bred heifer and hay prices) to vary over 1,000 possible outcomes, the results of the RSP analysis are presented on this slide.

What can we see from the analysis? Over the long run, we would expect the following:
There is a 100 percent probability that the Net Benefit would fall below $\$ 4,412$

There is a 100 percent probability that the Net Benefit would be above $-\$ 10,231$

In addition, there would be a $50 / 50$ chance that the Net Benefit would come out around $-\$ 3,701$

Finally, the analysis shows there would be a 18 percent chance that the Net Benefit would be above \$0 or a 92 chance that it would be below $\$ 0$.

After learning these results, we might ask again "Should the WX retain more heifers?"

Summary

The Risk Scenario
Planning tool:

- Can be a useful tool for analyzing management strategies and decisions involving risk
- Represents a better way to handle
 the presence of uncertainty by thinking in terms of distributions of possible outcomes over time
- Results in more informed decision-making
university © Brghtirsk WYOMIN

The Risk Scenario Planning tool:
Can be a useful tool for analyzing management strategies and decisions involving risk

Represents a better way to handle the presence of uncertainty by thinking in terms of distributions of possible outcomes over time

Results in more informed decision-making

If you have questions at this point, you might review the slides presenting the WX example problem again.

If you are wondering about how the Risk Scenario Planning tool works, you might consider visiting the RightRisk website at RightRisk.org and downloading the technical guide explaining the Risk Scenario Planning tool and demonstrating some additional examples.

Case 2: Convert to Free-Choice Mineral Supplementation

- The X Bar Ranch, a 500 cow/calf operation in the Waimea area, has been supplementing their cattle with a commercial mineral mix for over the past 10 years.
- Current prices for commercial mineral mix runs about $\$ 34.66 /$ cow/year. Recent work by the UH Cooperative Extension Service has found that an individual, cafeteria-style mineral program may reduce the cost of supplementation to about \$16.69/cow/year.

UNIVERSITY 9 ZTAMTSVSK.
WYOMING

Now consider a second example. The X Bar Ranch, a 500 cow/calf operation in the Waimea area, has been supplementing their cattle with a commercial mineral mix for over the past 10 years.

Current prices for commercial mineral mix runs about \$34.66/cow/year. Recent work by the UH Cooperative Extension Service has found that an individual, cafeteria-style mineral program may reduce the cost of supplementation to about $\$ 16.69 /$ cow/year.

Case 2: Convert to Free-Choice Mineral Supplementation

- Five new mineral bunks (1 bunk/ 100 head) would need to be constructed at an estimated cost of $\$ 1,000$ each and are expected to last 10 years. Currently they are paying about 7 percent interest on their operating capital.
- They anticipate they will spend an average of about 1 additional hour per week putting out mineral following the free-choice approach. Labor cost is around $\$ 20$ /hour, including all payroll taxes and benefits.
- Other expenses for additional fuel, vehicle maintenance and miscellaneous costs are expected to increase about $\$ 250$ year.
- They also anticipate management costs will increase around $\$ 500$ year to manage the new mineral program.
university (1) RHGMTRHK.

WVOMINC

Five new mineral bunks ($1 \mathrm{bunk} / 100$ head) would need to be constructed at an estimated cost of $\$ 1,000$ each and are expected to last 10 years. Currently they are paying about 7 percent interest on their operating capital.

They anticipate they will spend an average of about 1 additional hour per week putting out mineral following the free-choice approach. Labor cost is around $\$ 20 /$ hour, including all payroll taxes and benefits.

Other expenses for additional fuel, vehicle maintenance and miscellaneous costs are expected to increase about $\$ 250 /$ year.

They also anticipate management costs will increase around $\$ 500 /$ year to manage the new mineral program.

Case 2: Convert to Free-Choice Mineral Supplementation

- Based on past prices, they find that the free-choice mineral mix could be expected range between $\$ 14.19$ and \$19.19/cow/year.
- After further reflection, they realize that commercial mineral mix prices have varied between $\$ 29.46$ and $\$ 39.86 /$ cow $/$ year.

Based on past prices, they find that the free-choice mineral mix could be expected range between \$14.19 and \$19.19/cow/year.

After further reflection, they realize that commercial mineral mix prices have varied between $\$ 29.46$ and \$39.86/cow/year.

We can use the Risk Scenario Planning tool to help us evaluation this management decision. Should the X Bar change their mineral supplementation program?

You could STOP viewing this presentation here and return to the web page to download a document with all the details for the X Bar Ranch mineral supplementation program by clicking the link "RSP Tool PROBLEM HAWAI'I County."

You can also download a copy of the Risk Scenario Planning tool to enter the X Bar information and answer the question for yourself.

Case 2: Convert to Free-Choice Mineral Supplementation - TOTAL/year

Entering the X Bar data as the total cost per year, we would fill-in the RSP tool entries as we see on this slide.

We enter the Added Costs for the free-choice mineral mix, labor, bunk costs, etc.

In addition, we enter the Reduced Costs for the commercial mineral mix, along with labor for that approach, and other costs.

The Net Benefits is estimated at $\$ 6,600$ per year.

Case 2: Convert to Free-Choice Mineral
Supplementation - Per COW/year

Conversely, if we enter the X Bar data as the total cost per cow, we end-up with the entries as we see on this slide.

Again, we have the Added Costs for the free-choice mineral mix, labor, bunk costs, etc.

In addition, we have the Reduced Costs for the commercial mineral mix, along with labor for that approach, and other costs.

In this case, the Net Benefits is estimated at $\$ 13.32$ per cow.

Case 1: Convert to Free-Choice Mineral
 Supplementation - RSP Input Screen

The X Bar wants to make the price of the free-choice mineral mix uncertain:

- The current value of $\$ 16.69 / \mathrm{cow} /$ year is in cell H6 of the Risk Scenario Planning tool. We enter "Free-choice Mineral Mix" as the description and "H6" as the cell under Uncertain Value 1
- Then enter $\$ 16.69$ as the current value,
- $\$ 14.19$ as a possible minimum value, and
- $\$ 19.19$ as a possible maximum value.

WIVERSITY

Of WYOMING

Now consider that the X Bar wants to make the price of the free-choice mineral mix uncertain:

The current value of $\$ 16.69 / \mathrm{cow} /$ year is in cell H6 of the Risk Scenario Planning tool.

We enter "Free-choice Mineral Mix" as the description and "H6" as the cell under Uncertain Value 1 Then enter $\$ 16.69$ as the current or most likely value,
$\$ 14.19$ as a possible minimum value, and
$\$ 19.19$ as a possible maximum value.

Case 1: Convert to Free-Choice Mineral
 Supplementation - RSP Input Screen

The X Bar also wants to make the price of the commercial mineral mix uncertain:

- The current value of $\$ 34.66 / \mathrm{cow} /$ year is in cell D28 of the Risk Scenario Planning tool. We enter "Free-choice Mineral Mix" as the description and "D28" as the cell under Uncertain Value 1
- Then enter $\$ 34.66$ as the current value,
- \$29.46 as a possible minimum value, and
- $\$ 39.86$ as a possible maximum value.

In addition, the X Bar also wants to make the price of the commercial mineral mix uncertain:

The current value of $\$ 34.66 / \mathrm{cow} /$ year is in cell D28 of the Risk Scenario Planning tool.

We enter "Free-choice Mineral Mix" as the description and "D28" as the cell under Uncertain Value 2.

Then enter $\$ 34.66$ as the current or most likely value, $\$ 29.46$ as a possible minimum value, and $\$ 39.86$ as a possible maximum value.

Case 2: Covert to Free-Choice Mineral

Supplementation

- A cumulative distribution graph gives the probability of earning a net return at or below any certain value.

UNIVERSITY 3 STGWTSVSK
IWVOMING

After allowing the two uncertain values (price of free-choice and commercial mineral mixes) to vary over 1,000 possible outcomes, the results of the RSP analysis are presented on this slide.

What can we see from the analysis? Over the long run, we would expect the following: There is a 100 percent probability that the Net Benefit would fall below $\$ 9,264$ per year

There is a 100 percent probability that the Net Benefit would be above $\$ 4,041$ per year

In addition, there would be a $50 / 50$ chance that the Net Benefit would come out around $\$ 6,649$

Finally, the analysis shows there would be a 100 percent chance that the Net Benefit would be above $\$ 0$, given our assumptions.

Now we might ask again, "Should the X Bar change their mineral supplementation program?"

Thank you for taking time to view this recorded presentation.

We hope you have learned a little about how the Risk Scenario Planning tool might be used to analyze management strategies and decisions involving risk.

The Risk Scenario Planning tool and an online course explaining its use is available via a link on the webpage where you accessed this presentation, as well as at the RightRisk website: RightRIsk.org.

My contact information is on the slide, should have further questions.

